
The Vigenère cipher is a polyalphabetic cipher, originally created by Giovan Battista
Bellaso in 1553, but named after Blaise de Vigenère. The cipher works similarly to
a shift cipher as we begin by assigning each letter in the English alphabet an integer
value, starting with A = 0 and ending with Z = 25. We then come up with the keyword
we plan on using to encrypt the plaintext. The plaintext is encrypted in the following
manner: the first letter of the plaintext is encrypted with a shift corresponding to the
integer value of the first letter of the key. That is to say, we add the integer value of the
plaintext letter to the integer value of the keyword letter modulo 26. The outputted
value will correspond to the integer value of the first letter in the ciphertext. We do the
same for the second letter in the plaintext with the second letter in the keyword, and so
on until we run out of letters in the keyword. Then, we cycle back to the first letter in
the keyword and begin encrypting. Suppose a keyword has length m, then by indexing
the values of the plaintext (starting with 0), we see that the (0, 0+m, 0+2m, 0+3m. . . )
letters in the plaintext will all be encrypted with the first letter of the keyword. The
(1, 1 + m, 1 + 2m, 1 + 3m. . . ) letters in the plaintext will all be encrypted with the
second letter of the keyword, and so on. Deciphering a message given the keyword is
extremely straightforward. We do this by following the same procedure as described
for the encrypting process, with one adjustment. We subtract the integer value of the
key letter instead of adding it.

The cipher seems relatively straightforward and potentially easy to cryptanalyze,
but it wound up stumping code breakers for over three hundred years. Notice that the
number of possible keywords scales exponentially relative to m. In fact, the number of
keywords associated with a given value of m is equal to 26m. Historically, this number
of keys, even for small values of m, was to large for a person to attempt them all by
hand. This made the cipher particularly hard to crack. With modern technology, a
computer can quickly compute the plaintext corresponding to all possible keys if the
value of m is known. The problem is a little more difficult when the value of m is
unknown, but still solvable. Without modern computers, the cipher is much more
difficult to crack which is why it was thought impossible to cryptanalyze for hundreds
of years.

We can now begin to describe the methodologies used to cryptanalyze the Vigenère
cipher. The first breakthrough was the Kasiski test, developed in 1863 by Friedrich
Kasiski. This was a way to find the value of m, the key length, if given ciphertext
encrypted with the Vigenère cipher. Kasiski observed that sections of plaintext that
were the same and δ apart, where δ was a multiple of m, would be encrypted into
the same ciphertext. Using this, he described a procedure by which we take a three
letter sequence in the ciphertext and look for all the places in the ciphertext where it
appears. Next, we find the difference between the locations of these sequences. This
will give us a set of distances, δ0, δ1, ..., δi, and it stands to reason that these would
all be multiples of m. Thus, if we find the greatest common divisor of the set of δ’s,
we have a fairly good guess about the length of the key word.
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Another development in the cryptanalysis of the Vigenère cipher was the Friedman
test, also referred to as the index of coincidence. In 1920, Friedman posited that
given a string of n alphabetic characters, x = x1x2x3 . . . xn, we can define the index
of coincidence, Ic(x) as the probability that two random character in x) are the same.
The formula for the index of coincidence can be given by

Ic(x) =

∑25
i=0 fi(fi − 1)

n(n− 1)

where fi is the corresponding frequency of the i-th English letter, i.e., when i = 0
then fi is the frequency of the letter A. When examining the average string of English
text, we find that the Ic(x) ≈

∑25
i=0 p

2
i = 0.065, where pi is the average probability

of a letter appearing. That is to say, p0 is the average probability that a given letter
is A. We can now begin to apply these calculations to calculate our most probable
key length. The process for this works as follows. We begin by taking our cipher text
y1y2y3 . . . yk and breaking it up into m strings where m is our guess for the key length.
We break the cipher text up by taking y1 = y1y1+my1+2m . . . for our first string, then
y2 = y2y2+my2+2m . . . for our second, and so on. We can now calculate Ic(y1), Ic(y2),
and so on. If we have the correct guess for our key length m, then we would expect
that each index of coincidence would equal about 0.065. We can keep iterating over
different values for m until we find one where our average index of coincidence is equal
to about 0.065.

Now that we have a methodology for determining the key length, we are left with
the problem of finding the correct key. We begin by breaking up the ciphertext into
substrings in the same manner as described in the index of coincidence, with each
substring having length equal to n′ = n/m. We then calculate a new value which we
denote Mg. For 0 ≤ g ≤ 25, we say that

Mg =
25∑
i=0

pifi+g

n′

with pi being the probability of the i-th letter and fi+g being the frequency of the
(i + g)-th letter. Suppose that a key has length m, then we can write the key as
(k1, k2, ..., km). We can now calculate Mg(y1) for all 0 ≤ g ≤ 25. It turns out that
when g = k1 we will get Mg(y1) ≈ 0.065. We can do this for all substrings of yi to find
our most likely key values (k1, k2, k3, . . . , km).

Combining these three methodology, we have put together a strong starting point for
decrypting cipher text encrypted with the Vigenère cipher. The algorithm implemented
on this site uses these foundations, with some more optimization, as describe in what
follows.


