
DYNAMIC ALGORITHMS IN NUMERICAL SEMIGROUPS

GILAD MOSKOWITZ

Abstract. In this paper we describe various methods for calculating the factoriza-
tion set, length set, and delta set for a numerical semigroup and demonstrate the
utility of using dynamic algorithms. We then show that the calculations for the delta
set can be further improved by using an algebraic methodology.

Background

We begin by describing several of the important sets associated with a numerical
semigroup. Let S be a numerical semigroup with finite complement. We can write
S = 〈n1, n2, ..., nk〉 to indicate that the elements of S are generated by n1, n2, ..., nk.
This means that any element of S can be written as a linear combination of the gen-
erating elements. Given n ∈ S such that

n = p1n1 + p2n2 + ... + pknk for some pi ∈ N
we can write this specific factorization of n as p = (p1, p2, ..., pk) and the set of factor-
izations of n is

ZS(n) = {p ∈ Nk : p1n1 + p2n2 + ... + pknk = n}.
When there is no uncertainty regarding the numerical semigroup S, we simply write
Z(n). We also say that the factorization set of S is

Z(S) = {Z(n) : n ∈ S}.
Given a factorization p of n, we say that the length of that factorization is

|p| = p1 + p2 + ... + pn

and the length set for a given n is

L(n) = {|p| : p ∈ Z(n)}.
The a length set of S is defined as

L(S) = {L(n) : n ∈ S}.
Let L(n) = {l0, l1, ..., lk} for some n ∈ S and finite k, where li < lj for i < j. We say
that the delta set of n is

∆(n) = {|li − li−1| : i = 1, 2, .., k}.
We say that the delta set of S is

∆(S) = ∪∞n=0∆(n).
1

2 MOSKOWITZ

Now that we have a notion of the sets we are discussing, we can start to describe the
various computational methodologies used to calculate these sets.

Coding Definitions

Definition 1. Dictionary: A mapping of a unique set of keys to specific values.

Example 1.

Dict = {“Name1” : “Leeav”, “Age1” : 24, “Name2” : “Gilad”, “Age2” : 24}

As we can see we have all unique keys but some repeated values. If we wanted to call
a value from the dictionary, we would use Dict[“Name1”] and we would get an output
of Leeav.

Definition 2. List : An array of values.

Example 2.

L = [1, 2, 1, 4, 7]

The elements of a list are indexed starting at zero. For example, in this list if we were
to call L[1] we would get an output of 2. Note: the elements of a list can be a variety
of things, but for the purposes of this paper we will only look at lists of numbers.

Notation 1. For the purposes of this paper, when presenting code or pseudo-code for
a function, we use S to represent the list that corresponds to the minimal generators
of the numerical semigroup. This means that, when one would typically write S =
〈s1, s2, ..., sq〉 we use S = [s1, s2, ..., sq].

1. Brute Force Methodology

One potential type of algorithm for solving problems is computational brute force.
This means testing all possible combinations that could potentially work and seeing
which ones do. Brute force is often considered the least efficient type of algorithm and
even small bounding conditions can vastly improve the runtime. We now present a
generic brute force algorithm for finding the Z(S) up to a specific element, and then
demonstrate how one small constraint vastly improves runtime. A brief explanation of
how the program works follows the code.

de f BadBruteForceFact (S , nmax) :
F = {}
F [0] ← [0 vec to r]
f o r n in [1 . . nmax] :

F [n] ← {(a1, a2, . . . , aq) : a1s1 + a2s2 + . . . + aqsq = n, f o r ai ≤ n/si}
r e turn F

DYNAMIC ALGORITHMS IN NUMERICAL SEMIGROUPS 3

The code takes in two pieces of information, the generators of the semigroup S =
〈s1, s2, ..., sq〉 in the form of a list, and the number up to which we are finding factor-
ization sets for. The output of the function is a dictionary that maps the numbers 0
to nmax to their respective factorization set. The way the code works is by finding
the factorization set for every 0 ≤ n ≤ nmax. For a given n we generate a list (M)
of floor(n/si) for all i from 1 to q. This list corresponds to the max possible copies
of each generator in any factorization of n. Then the code runs through all possible
combinations starting with the all zeros list and counting up to the list M , testing each
combination as a linear combination of the generators and seeing if they sum up to n.
If a specific combination does work, it gets added to the dictionary corresponding to
the key n.

Example 3. Let S = 〈6, 9, 20〉 and nmax = 500, suppose we are at the specific
iteration that is looking at n = 180. We start by generating the list M which will look
like M = [180/6, 180/9, 180/20] = [30, 20, 9]. Then, we start counting and checking all
possible combinations of 6a + 9b + 20c for 0 ≤ a ≤ 30, 0 ≤ b ≤ 20, and 0 ≤ c ≤ 9.
We do this by generating the list [0, 0, 0] and checking if this works, then [0, 0, 1], ...,
then the list [30, 20, 9]. Any list we check that works gets added to the dictionary
corresponding to the key n, in this case 180.

Using the above code turns out to be extremely inefficient since we end up looking
through a lot of unnecessary combinations. One simple way of significantly improving
the runtime of the “Bad” brute force method, is to solve for

a2s2 + a3s3 + ... + aqsq = n mod s1

which means only looking at linear combinations of some of the generators (all but
the first) and seeing if taking n minus that linear combination yields something that
is divisible by the smallest generator. The code is presented below followed by an
example.

de f BetterBruteForceFact (S , nmax) :
F = {}
F [0] ← [0 vec to r]
f o r n in [1 . . nmax] :

F [n] ← {(n/a1, a2, . . . , aq) : n− (a2s2 + . . . + aqsq) = 0 mod s1, f o r ai ≤ n/si}
r e turn F

Example 4. Let S = 〈6, 9, 20〉 and nmax = 500, suppose we are at the specific
iteration that is looking at n = 180. We start by generating the list M which will
look like M = [0, 180/9, 180/20] = [0, 20, 9]. When then check to see if 180 is divisible
by 6 and since it is, we add (180/6, 0, 0) to the set of factorizations. Then, we start
counting and checking all possible combinations of (180 − 9b + 20c)/6 for 0 ≤ b ≤ 20

4 MOSKOWITZ

and 0 ≤ c ≤ 9 and see if we get an integer value. If we do then we make the list
[(180− 9b + 20c)/6, b, c] and add it to the dictionary corresponding to 180.

Now we have shown the brute force methodology for finding factorization sets of a
numerical semigroup. The methodology for finding the length set uses the same basic
code as that for the factorization, except instead of adding a list to the dictionary, we
sum together all the values in the list and add that to the dictionary. We use the basis
of the code described above to write the brute force methodology for the length set.

de f BadBruteForceLen (S , nmax) :
F = {}
F [0] ← [0]
f o r n in [1 . . nmax] :

F [n] ← {
∑q

i=1 ai : a1s1 + a2s2 + . . . + aqsq = n, f o r ai ≤ n/si}
r e turn F

de f BetterBruteForceLen (S , nmax) :
F = {}
F [0] ← [0 vec to r]
f o r n in [1 . . nmax] :

F [n] ← {n/a1 +
∑q

i=2 ai : n− (a2s2 + . . . + aqsq) = 0 mod s1, f o r ai ≤ n/si}
r e turn F

Finding the Factorization Set and Length Set for a specific element. All the
aforementioned code returns a dictionary which stores all the factorization sets and
length sets of the values 0 to nmax. The benefit of having this type of output is that
after running the code, an individual has access to the information they desire for a
wide range of elements of S. Referencing the information in the dictionary takes no
time (O(1) for those familiar with this notation). However, if an individual only cares
about the factorization set or length set of an element, n, in S it would be more efficient
to only calculate it for that element. This can be done in the same manner described
in the previous examples for finding the factorization set or length set of a specific
number while iterating between 1 and nmax. The code for doing so is as follows

de f BadBruteForceLenOne (S , n) :
F = []
F ← {

∑q
i=1 ai : a1s1 + a2s2 + . . . + aqsq = n, f o r ai ≤ n/si}

r e turn so r t ed (F)

de f BetterBruteForceLenOne (S , n) :
F = []
F ← {n/a1 +

∑q
i=2 ai : n− (a2s2 + . . . + aqsq) = 0 mod s1, f o r ai ≤ n/si}

DYNAMIC ALGORITHMS IN NUMERICAL SEMIGROUPS 5

r e turn so r t ed (F)

de f BadBruteForceFactOne (S , n) :
F = []
F ← {(a1, a2, . . . , aq) : a1s1 + a2s2 + . . . + aqsq = n, f o r ai ≤ n/si}
r e turn F

de f BetterBruteForceFactOne (S , n) :
F = []
F ← {(n/a1, a2, . . . , aq) : n− (a2s2 + . . . + aqsq) = 0 mod s1, f o r ai ≤ n/si}
r e turn F

2. Dynamic Algorithms Methodology

Background. A dynamic algorithm is a way of solving the problem that breaks up
the problem into many smaller parts and solves it recursively. The dynamic algorithm
can store the information from the solutions to the smaller problems and use those to
solve the larger problem.

Example 5. Suppose you wanted to write a code that will give you the n-th number of
the Fibonacci sequence. One way to write this code is to solve the problem recursively,
this means that if we wanted a function Fib(n) that returns the n-th number of the
Fibonacci sequence using a recursive algorithm we can code it as follows

import math
de f Fib (n) :

i f n <= 1 :
re turn n

e l s e :
r e turn Fib (n − 1) + Fib (n − 2)

The function takes an input of n as the number in the sequence we are trying to reach.
Suppose that we put n = 4. The way the algorithm would run is as follows:
First iteration: Fib(3) + Fib(2)
Second iteration: (Fib(2) + 1) + (1 + 0)
Third iteration: ((1 + 0) + 1) + (1 + 0) = 3
So as we see, calling this function requires us to calculate Fib(2) twice. For higher
values of n we would have to make repeated calculations even more times.
A dynamic algorithm for finding the n-th term in the Fibonacci sequence can be written
as follows

6 MOSKOWITZ

import math
de f Fib (n) ;

Dict = {}
Dict [0] = 0
Dict [1] = 1
i f n <= 1 :

re turn Dict [n]
f o r i in [2 . . n] :

Dict [i] = Dict [i − 1] + Dict [i − 2]
r e turn Dict [n]

This algorithm stores the previously calculated Fibonacci numbers and uses them to
calculate the next one. There is no repeated calculations needed and this will calculate
each Fibonacci number between 2 and n exactly once.
Clearly the dynamic algorithm for calculating the n-th term in the Fibonacci sequence
is much faster than the recursive method that repeats calculations. In general, a
dynamic algorithm for solving a problem is very quick.

Now that we have introduced the concept of a dynamic algorithm, we can describe the
use of dynamic algorithms in solving for the factorization set and the length set of a
numerical semigroup.

Dynamic Algorithms for Factorization Set and Length Set. We begin with
the following lemma regarding the factorization set of n in a numerical monoid (note
that for the purposes of this paper numerical monoid and numerical semigroup are
interchangeable).

Lemma ([1, Lemma 3.1]). Fix a reduced, finitely generated monoid M (written addi-
tively) with irreducible elements m1,m2, ...,mk. For each non-zero n ∈M , we have

Z(n) = ∪ki=1{a + ei : a ∈ Z(n−mi)}
= tki=1{a + ei : a ∈ Z(n−mi), aj = 0 for each j < i}

Using the information in the lemma we can write a dynamic program for getting the
factorization sets up to a specific element. First, we present an example to demonstrate
the first claim made by the lemma, then we will present the code that we can use to
actually compute the factorization set.

Example 6. Let S = 〈6, 9, 20〉. Suppose we wanted to calculate the factorization
set for the element 15. We first look to see if 15 − 6 = 9 ∈ S, which it is, so we
check the factorization set of 9. We see that the only factorization of 9 is (0, 1, 0).
To get a factorization for 15 from this factorization of 9 we increment the first spot
(i.e. the spot corresponding to the number of 6’s in a factorization) by 1. We get the
factorization (1, 1, 0), which is indeed a factorization for 15. We now move onto the

DYNAMIC ALGORITHMS IN NUMERICAL SEMIGROUPS 7

second generator and check to see if 15− 9 = 6 ∈ S. Since 6 ∈ S with a factorization
(1, 0, 0) we now increment the second spot, corresponding to the number of 9’s, by 1
to get (1, 1, 0). Finally, we check 15− 20 = −5 /∈ S, so we get our factorization set for
15 is {(1, 1, 0)} ∪ {(1, 1, 0)} = {(1, 1, 0)}.

The dynamic code that calculates the factorization set stores all the previous factor-
ization sets in a dictionary and then calls on those dictionary values to generate the
new factorization.

de f FactorizationsUpToElement (S , nmax) :
s t a r t = time . time ()
F = {}
p = [0] ∗ l en (S)
F [0] = []
F [0] . append (p)
f o r n in [1 . . nmax] :

F [n] = s e t ([])
f o r i in range (l en (S)) :

i f n − S [i] < 0 :
cont inue

f o r a in F [n − S [i]] :
s = l i s t (a)
s [i] += 1
s = tup l e (s)
i f s not in F [n] :

F [n] = F [n] . union (s e t ([s]))
runtime = time . time () − s t a r t
p r i n t runtime
return F

NOTE: The code as written above only looks at the union of the previous factorization
sets, and not the disjoint union of portions of the previous factorization sets. Im-
plementing a code that utilizes the second equality in the lemma involves sorting the
factorization sets of each element, but would be substantially more optimized.

The dynamic algorithm for calculating the length set is very similar in nature to the
one provided by Lemma 3.1. Using Lemma 3.1 we can see that

Corollary ([1, Lemma 3.5]). Fix a reduced, finitely generated monoid M (written
additively) with irreducible elements m1,m2, ...,mk. For each non-zero n ∈ M , we

8 MOSKOWITZ

have

L(n) = {|p| : p ∈ Z(n)}
= ∪ki=1{|a + ei| : a ∈ Z(n−mi)}
= ∪ki=1{|a|+ 1 : a ∈ Z(n−mi)}
= ∪ki=1{L(n−mi) + 1}
= ∪ki=1{l + 1 : l ∈ L(n−mi)}

From the corollary we can write a dynamic program that calculates the length set of a
specific n ∈ S without the need to look at the factorization set at all.

Example 7. Let S = 〈6, 9, 20〉. We see that the factorization length of 0 is 0. If we were
to try to calculate the length set of 6 we would look if 6− 6 = 0 ∈ S, 6− 9 = −3 /∈ S,
and 6− 20 = −14 /∈ S. Since we only have that 0 ∈ S we only care about the length
set of 0 which is 0. So we see based on the corollary that L(6) = {0 + 1} = {1}. Let’s
also examine the length set of 15. For 15 we have 15− 6 = 9 ∈ S, 15− 9 = 6 ∈ S, and
15 − 20 = −5 /∈ S, so we need to look at the length set of 6 and 9. By the corollary
we have that

L(15) = {L(6) + 1} ∪ {L(9) + 1}
= {1 + 1} ∪ {1 + 1}
= {2} ∪ {2}
= {2}

A dynamic algorithm using the corollary as a basis stores the length sets of previously
calculated elements in a dictionary and then calls on those values to calculate the next
length set. The code for such an algorithm is as follows

de f LengthSetsUpToElement (S , nmax) :
s t a r t = time . time ()
l e n g t h s e t s = {}
l e n g t h s e t s [0] = [0]
f o r n in [1 . . nmax] :

i f n in l e n g t h s e t s :
cont inue

l e n g t h s e t s [n] = []
f o r i in range (l en (S)) :

i f n − S [i] < 0 :
cont inue

l e n g t h s e t s [n] += [l + 1 f o r l in l e n g t h s e t s [n − S [i]]]
l e n g t h s e t s [n] = sor t ed (l i s t (Set (l e n g t h s e t s [n])))

DYNAMIC ALGORITHMS IN NUMERICAL SEMIGROUPS 9

runtime = time . time () − s t a r t
p r i n t runtime
return l e n g t h s e t s

NOTE: The code as written above could be further optimized by using Booleans to
check if a specific factorization length has already been accounted for. Currently the
code makes a list of all possible factorization lengths for a specific n then removes the
duplicates and sorts it.

The dynamic algorithms both output a dictionary with values for each element from 0
to nmax. Similarly to before, if an individual wanted to be able to access the informa-
tion for many different elements then using this dictionary output is ideal. However,
using a dynamic algorithm, if an individual only wanted to access the factorization set
or length set of a specific element, they would need to set nmax equal to that element
and then call on the dictionary element nmax. Typically, this will still run faster then
brute forcing the factorization set or length set for the specific element, but there are
some extremal cases for which this is not true.

Runtimes. Below we have a table of runtimes for finding the factorization set up to
a specific element using all three previously presented algorithms.
The runtimes show that for calculating all the values up to n the dynamic algorithm
is significantly faster than the other two. However, for cases with a small number of
generators the slightly optimized brute force methodology works slightly faster than
the dynamic algorithm. Further tests and runtimes need to be recorded.

Calculating factorization sets up to n, various runtimes.

Calculating length sets up to n, various runtimes.

Calculating factorization set of n, various runtimes.

Calculating length set of n, various runtimes.

10 MOSKOWITZ

3. Computing the delta set

Before the dynamic algorithm for computing the length set, there was no way to
reasonably (within a relatively small amount of time) computationally calculate the
delta set of a numerical semigroup. Once the dynamic algorithm was created, using
the bound for the number of elements you have to look at, NS [2], we can get the delta
set of every element up to NS and then union those sets to get the delta set of S. This
allows us to find the delta set of S in reasonable computational time. The pseudo-code
for calculating the delta set is as follows (note: that here S only represents the list of
the generators of the numerical semigroup)

de f DeltaSet (S) :
Ca l cu la te NS

nmax = NS + lcm(min(S),max(S))
A = LengthSetsUpToElement (S , nmax)
∆ = ∪nmax

i=0 ∆(A[i])
r e turn ∆

with the code calculating the delta set for all the elements in S between 0 and NS +
lcm(min(S),max(S)) and then taking the union of all those sets to get ∆(S). This
computation of the delta set is resonably fast, since if you recall the algorithm for
calculating the length sets of all the elements in S is very quick. However, for substan-
tially large NS, this code can still take a while to run.
Here I would like to call back to the example I used earlier of calculating the n-th
element of the Fibonacci Sequence. We saw that using the classic recursive algorithm
has us calculate the same values over and over, and we can make a much more efficient
dynamic algorithm. The dynamic algorithm was very fast, but still required us to run
through all the elements of the Fibonacci Sequence from the first to the n-th. There is
another, faster, methodology for calculating the n-th term of the Fibonacci Sequence,
and that is to use a formula. The code for that would look as follows

import math
de f Fib (n) :

r e turn 1√
5

((
1+
√
5

2

)n − (1−√5
2

)n)
and has O(1) meaning that the time it takes to run this is constant and doesn’t depend
on n. This is significantly more efficient than the dynamic algorithm we presented ear-
lier. The reason I call attention to this is to say that, if an individual has some amount
of formulas or algebra they can use to solve a complicated problem then it can simplify
the problem significantly more than a purely dynamic algorithm. For calculating the
delta set, an algebraic methodology was found that substantially reduced the compu-
tational time.

DYNAMIC ALGORITHMS IN NUMERICAL SEMIGROUPS 11

3.1. Algebraic Methodology for calculating the Delta Set. We start with the
ring k[x1, x2, ..., xn] and the numerical semigroup S = 〈s1, s2, ..., sk〉. We will also have
a mapping from ϕ : Zk

≥0 → S such that ϕ(a) = a1s1 + a2s2 + ... + aksk We make an

ideal IS = 〈xa − xb : ϕ(a) = ϕ(b)〉. This is essentially saying that IS is the binomial
ideal generated by the elements in S with multiple factorizations. We then add a new
variable t to IS with a lex definition t > xi such that we homogenize all the generators
of IS using t. We find that deg(t) actually represents the difference in length between
two factorizations of an element in S.

Example 8. Let S = 〈6, 9, 20〉. Then one of our generators of the ideal IS is going to
be x3

1 − x2
2, which comes from the two ways of factoring 18 ∈ S. To homogenize this

element we simply take x3
1 − tx2

2 and here we see that the degree of t is 1, which is
exactly the difference in factorization length between the two.

Once we have homogenized the elements of IS in the manner described above, we
calculate a reduced lex Grobner Basis G for IS and we find that ∆(S) = {d : tdxa−xb ∈
G}. The proof for this uses Hilbert Basis and chains of ideals [3], and this allows us
to come up with a much cleaner and more efficient algorithm for calculating the delta
set. Instead of using the dynamic algorithm for calculating the length set up to an
extremely large element of S, we can simply look at the delta sets of a small subset of
elements in S. The pseudo-code for calculating the delta set in the manner described
above is as follows (note: S = 〈s1, s2, ..., sk〉)

de f DeltaSet (S) :
p = minimal p r e s en ta t i on o f SA = 〈(1, 0), (1, s1), (1, s2), ...(1, sk)〉
G = Grobner Bas i s o f 〈tixa − tjxb : ((i, a), (j, b)) ∈ p〉
∆ = {d : tdxa − xb ∈ G}
r e turn ∆

and using this code we are able to calculate the delta set signigificantly faster than
using the previous dynamic algorithm.

4. Conclusion

We can see that there a variety of methodologies for calculating the various prop-
erties of a numerical semigroup S. Typically we have found that the brute force
methodology for calculating the factorization set and length set is rather slow. By
finding a dynamic methodology for making these calculations we are able to do them
in reasonable computational time. This also allows us to calculate other properties of a
numerical semigroup, such as the delta set, in a reasonable time. However, by finding
an algebraic algorithm for calculating the delta set we are able to significantly reduce
the runtime needed for it.

12 MOSKOWITZ

5. Appendix

The following is the actual code to all the programs described above. The name of
the function is the same as that of the pseudo-code:

import math
import time
de f BadBruteForceFact (S , nmax) :

s t a r t = time . time ()
F = {}
p = [0] ∗ l en (S)
F [0] = []
F [0] . append (p)
f o r n in [1 . . nmax] :

F [n] = []
M = []
f o r i in range (l en (S)) :

M. append (f l o o r (n/S [i]))
N = [0] ∗ l en (M)
whi le (N != M) :

f o r i in range (1 , l en (M)) :
i f (N[l en (M)− i] == M[l en (M)− i]) :

N[l en (M)− i] = 0
i f (N[l en (M) − (i +1)] != M[l en (M) − (i + 1)]) :

N[l en (M) − (i +1)] += 1
break

e l s e :
N[l en (M)− i] += 1
break

a = 0
f o r l in range (l en (N)) :

a += N[l]∗S [l]
i f a == n :

F [n] . append (N [:])
runtime = time . time () − s t a r t
p r i n t runtime
return F

import math
import time

DYNAMIC ALGORITHMS IN NUMERICAL SEMIGROUPS 13

de f BetterBruteForceFact (S , nmax) :
s t a r t = time . time ()
F = {}
p = [0] ∗ l en (S)
F [0] = []
F [0] . append (p)
f o r n in [1 . . nmax] :

F [n] = []
M = []
f o r i in range (l en (S)) :

i f i == 0 :
M. append (0)

e l s e :
M. append (f l o o r (n/S [i]))

N = [0] ∗ l en (M)
i f n%S [0] == 0 :

A = N [:]
A[0] = n/S [0]
F [n] . append (A)

whi le (N != M) :
f o r i in range (1 , l en (M)) :

i f (N[l en (M)− i] == M[l en (M)− i]) :
N[l en (M)− i] = 0
i f (N[l en (M) − (i +1)] != M[l en (M) − (i + 1)]) :

N[l en (M) − (i +1)] += 1
break

e l s e :
N[l en (M)− i] += 1
break

a = 0
f o r l in range (l en (N)) :

a += N[l]∗S [l]
i f ((n − a)%S [0] == 0 and (n − a) >= 0) :

A = N [:]
A[0] = (n − a)/S [0]
F [n] . append (A)

runtime = time . time () − s t a r t
p r i n t runtime

14 MOSKOWITZ

r e turn F

import math
import time
de f BadBruteForceLen (S , nmax) :

s t a r t = time . time ()
F = {}
p = 0
F [0] = []
F [0] . append (p)
f o r n in [1 . . nmax] :

F [n] = []
M = []
f o r i in range (l en (S)) :

M. append (f l o o r (n/S [i]))
N = [0] ∗ l en (M)
whi le (N != M) :

f o r i in range (1 , l en (M)) :
i f (N[l en (M)− i] == M[l en (M)− i]) :

N[l en (M)− i] = 0
i f (N[l en (M) − (i +1)] != M[l en (M) − (i + 1)]) :

N[l en (M) − (i +1)] += 1
break

e l s e :
N[l en (M)− i] += 1
break

a = 0
f o r l in range (l en (N)) :

a += N[l]∗S [l]
i f a == n :

b = 0
f o r i in N:

b += i
F [n] . append (b)

F [n] = so r t ed (l i s t (s e t ((F [n]))))
runtime = time . time () − s t a r t
p r i n t runtime
return F

DYNAMIC ALGORITHMS IN NUMERICAL SEMIGROUPS 15

de f BetterBruteForceLen (S , nmax) :
s t a r t = time . time ()
F = {}
p = 0
F [0] = []
F [0] . append (p)
f o r n in [1 . . nmax] :

F [n] = []
M = []
f o r i in range (l en (S)) :

i f i == 0 :
M. append (0)

e l s e :
M. append (f l o o r (n/S [i]))

N = [0] ∗ l en (M)
i f n%S [0] == 0 :

F [n] . append (n/S [0])
whi l e (N != M) :

f o r i in range (1 , l en (M)) :
i f (N[l en (M)− i] == M[l en (M)− i]) :

N[l en (M)− i] = 0
i f (N[l en (M) − (i +1)] != M[l en (M) − (i + 1)]) :

N[l en (M) − (i +1)] += 1
break

e l s e :
N[l en (M)− i] += 1
break

a = 0
f o r l in range (l en (N)) :

a += N[l]∗S [l]
i f ((n − a)%S [0] == 0 and (n − a) >= 0) :

A = N [:]
A[0] = (n − a)/S [0]
b = 0
f o r i in A:

b += i
F [n] . append (b)

F [n] = so r t ed (l i s t (s e t ((F [n]))))

16 MOSKOWITZ

runtime = time . time () − s t a r t
p r i n t runtime
return F

de f BadBruteForceLenOne (S , n) :
s t a r t = time . time ()
F = []
M = []
f o r i in range (l en (S)) :

M. append (f l o o r (n/S [i]))
N = [0] ∗ l en (M)
whi le (N != M) :

f o r i in range (1 , l en (M)) :
i f (N[l en (M)− i] == M[l en (M)− i]) :

N[l en (M)− i] = 0
i f (N[l en (M) − (i +1)] != M[l en (M) − (i + 1)]) :

N[l en (M) − (i +1)] += 1
break

e l s e :
N[l en (M)− i] += 1
break

a = 0
f o r l in range (l en (N)) :

a += N[l]∗S [l]
i f a == n :

b = 0
f o r i in N:

b += i
F . append (b)

F = sor t ed (l i s t (s e t ((F))))
runtime = time . time () − s t a r t
p r i n t runtime
return F

de f BetterBruteForceLenOne (S , n) :
s t a r t = time . time ()
F = []
M = []
f o r i in range (l en (S)) :

DYNAMIC ALGORITHMS IN NUMERICAL SEMIGROUPS 17

i f i == 0 :
M. append (0)

e l s e :
M. append (f l o o r (n/S [i]))

N = [0] ∗ l en (M)
i f n%S [0] == 0 :

F . append (n/S [0])
whi l e (N != M) :

f o r i in range (1 , l en (M)) :
i f (N[l en (M)− i] == M[l en (M)− i]) :

N[l en (M)− i] = 0
i f (N[l en (M) − (i +1)] != M[l en (M) − (i + 1)]) :

N[l en (M) − (i +1)] += 1
break

e l s e :
N[l en (M)− i] += 1
break

a = 0
f o r l in range (l en (N)) :

a += N[l]∗S [l]
i f ((n − a)%S [0] == 0 and (n − a) >= 0) :

A = N [:]
A[0] = (n − a)/S [0]
b = 0
f o r i in A:

b += i
F . append (b)

F = sor t ed (l i s t (s e t ((F))))
runtime = time . time () − s t a r t
p r i n t runtime
return F

de f BadBruteForceLenOpt (S , nmax) :
s t a r t = time . time ()
F = {}
p = 0
F [0] = []
F [0] . append (p)
f o r n in [1 . . nmax] :

18 MOSKOWITZ

F[n] = []
M = []
f o r i in range (l en (S)) :

M. append (f l o o r (n/S [i]))
N = [0] ∗ l en (M)
r = f l o o r (n/max(S))
q = f l o o r (n/min (S))
D = {}
f o r j in [r . . q] :

D[j] = Fal se
whi l e (N != M) :

f o r i in range (1 , l en (M)) :
i f (N[l en (M)− i] == M[l en (M)− i]) :

N[l en (M)− i] = 0
i f (N[l en (M) − (i +1)] != M[l en (M) − (i + 1)]) :

N[l en (M) − (i +1)] += 1
break

e l s e :
N[l en (M)− i] += 1
break

a = 0
f o r l in range (l en (N)) :

a += N[l]∗S [l]
i f a == n :

b = 0
f o r i in N:

b += i
D[b] = True

f o r j in [r . . q] :
i f D[j] :

F [n] . append (j)
runtime = time . time () − s t a r t
p r i n t runtime
return F

de f BetterBruteForceLenOpt (S , nmax) :
s t a r t = time . time ()
F = {}
D = {}

DYNAMIC ALGORITHMS IN NUMERICAL SEMIGROUPS 19

p = 0
F [0] = []
F [0] . append (p)
f o r n in [1 . . nmax] :

r = f l o o r (n/max(S))
q = f l o o r (n/min (S))
D = {}
f o r j in [r . . q] :

D[j] = Fal se
F [n] = []
M = []
f o r i in range (l en (S)) :

i f i == 0 :
M. append (0)

e l s e :
M. append (f l o o r (n/S [i]))

N = [0] ∗ l en (M)
i f n%S [0] == 0 :

D[n/S [0]] = True
whi le (N != M) :

f o r i in range (1 , l en (M)) :
i f (N[l en (M)− i] == M[l en (M)− i]) :

N[l en (M)− i] = 0
i f (N[l en (M) − (i +1)] != M[l en (M) − (i + 1)]) :

N[l en (M) − (i +1)] += 1
break

e l s e :
N[l en (M)− i] += 1
break

a = 0
f o r l in range (l en (N)) :

a += N[l]∗S [l]
i f ((n − a)%S [0] == 0 and (n − a) >= 0) :

A = N [:]
A[0] = (n − a)/S [0]
b = 0
f o r i in A:

b += i

20 MOSKOWITZ

D[b] = True
f o r j in [r . . q] :

i f D[j] :
F [n] . append (j)

runtime = time . time () − s t a r t
p r i n t runtime
return F

de f BadBruteForceFactOne (S , n) :
s t a r t = time . time ()
F = []
M = []
f o r i in range (l en (S)) :

M. append (f l o o r (n/S [i]))
N = [0] ∗ l en (M)
whi le (N != M) :

f o r i in range (1 , l en (M)) :
i f (N[l en (M)− i] == M[l en (M)− i]) :

N[l en (M)− i] = 0
i f (N[l en (M) − (i +1)] != M[l en (M) − (i + 1)]) :

N[l en (M) − (i +1)] += 1
break

e l s e :
N[l en (M)− i] += 1
break

a = 0
f o r l in range (l en (N)) :

a += N[l]∗S [l]
i f a == n :

F . append (N [:])
runtime = time . time () − s t a r t
p r i n t runtime
return F

de f BetterBruteForceFactOne (S , n) :
s t a r t = time . time ()
F = []
M = []
f o r i in range (l en (S)) :

DYNAMIC ALGORITHMS IN NUMERICAL SEMIGROUPS 21

i f i == 0 :
M. append (0)

e l s e :
M. append (f l o o r (n/S [i]))

N = [0] ∗ l en (M)
i f n%S [0] == 0 :

A = N [:]
A[0] = n/S [0]
F . append (A)

whi le (N != M) :
f o r i in range (1 , l en (M)) :

i f (N[l en (M)− i] == M[l en (M)− i]) :
N[l en (M)− i] = 0
i f (N[l en (M) − (i +1)] != M[l en (M) − (i + 1)]) :

N[l en (M) − (i +1)] += 1
break

e l s e :
N[l en (M)− i] += 1
break

a = 0
f o r l in range (l en (N)) :

a += N[l]∗S [l]
i f ((n − a)%S [0] == 0 and (n − a) >= 0) :

A = N [:]
A[0] = (n − a)/S [0]
F . append (A)

runtime = time . time () − s t a r t
p r i n t runtime
return F

References

[1] T. Barron, C. O’Neill, and R. Pelayo, On dynamic algorithms for factorization invariants
in numerical monoids, Mathematics of Computation, 86 (2016), p. 2429–2447.

[2] J. I. Garćıa-Garćıa, M. A. Moreno-Fŕıas, and A. Vigneron-Tenorio, Computation of
delta sets of numerical monoids, 2014.

[3] P. A. Garćıa-Sánchez, C. O’Neill, and G. Webb, On the computation of factorization
invariants for affine semigroups, 2015.

Mathematics Department, San Diego State University, San Diego, CA 92182
Email address: gilad.moskowitz@gmail.com

